
 

  
Abstract-- The IEC TC 57 Common Information Model (CIM) 
started with a focus on the power system models in the Energy 
Management Systems (EMS) domain. The need for a common 
model in Distribution Management Systems (DMS) and market 
operations drove CIM into those areas. The CIM was created in 
order to provide an information exchange format to facilitate the 
integration of applications and systems independent of their 
vendors and implementation. The current CIM model, including 
61970 Part 301 and 61968 Part 11, intends to provide a standard 
semantic foundation for applications and systems to move toward 
interoperability. Given the fact that more and more integration 
projects are leveraging the standard CIM and using it as one of 
the input models forming the basis of an enterprise-wise model, 
the semantics (meaning “meanings”) of the model are the key 
aspect that enables applications and systems (developers) to 
understand the data that is shared or exchanged among them. 
This paper provides an overview of how the business data 
semantics are represented in CIM using UML syntax. It 
elaborates on the meanings of the UML modeling concepts, 
which are further examined in the context of CIM. A set of 
recommendations is then proposed, regarding the modeling of 
CIM. 
 

Index Terms—Common Information Model (CIM), Unified 
Modeling Language (UML), Energy Management System (EMS), 
Distribution Management System (DMS) 

I.  INTRODUCTION 
HE common information model (CIM) is one of the most 
important parts of the IEC 91670 [1, Part 301] and IEC 

61968 [2] series standards. The CIM provides a 
comprehensive logical view of a power system [1, Part 1]. 
CIM started with a focus on the power system models in the 
Energy Management Systems (EMS) domain [1, Part 301]. 
The need for a common model in Distribution Management 
Systems (DMS) drove extensions in the directions of asset 
management, distribution network, work management, and 
other related areas to be included in the CIM [2]. The new 
CIM Market Extension (CME) allows the CIM to be used as 
the basis for power market operations.  

 
Before we proceed, it is important to understand what the 

CIM is, and its intended usage. First of all, the CIM is a 
structural (class / object) model that provides a standard way 
of representing power system objects in terms of classes and 
attributes, as well as the relationships between them [1, Part 
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1]. The comprehensive logical view represented by CIM is 
independent of any physical implementation languages and 
technologies. It focuses on modeling the electrical utility 
domain knowledge with logical modeling concepts so that a 
common model (semantic and syntax) can be achieved. Any 
extensions or modifications to the CIM model should not 
break this fundamental philosophy. Second, the usage of CIM 
is characterized as a tool to enable integration where a 
common model is needed to facilitate the interoperability 
regardless how each application or system is implemented [1, 
Part 1]. Because CIM is a logical model providing formal 
semantics for the electrical utility domain, it doesn’t address 
the physical format and structures that an implementation 
model uses for data exchange and sharing. What it does do is 
specifying the domain concepts and semantics to which the 
implementation model can be mapped. Given this traceability 
back to a standard model, a mutual understanding of the data 
content being exchanged and shared can be achieved. The 
CIM is therefore a logical model where the business data 
semantics are represented. 

II.  CHALLENGES 
In order to promote and enable reusability, CIM defines 

power system domain knowledge using object oriented data 
modeling techniques specifying classes, attributes, and 
relationships in UML. The power system domain knowledge 
is then interpreted in the context of CIM so that when a term is 
referenced, a mutual understanding of the term can be 
achieved between different parties. Based on the business data 
semantics and requirements, the CIM modeling process 
typically involves identifying objects and relationships; 
designing classes, attributes, and associations; and abstracting 
class hierarchies. The most important goal in the CIM 
modeling process is to preserve and clarify the business data 
semantics so that the CIM can truly become the semantic 
foundation for systems and applications to share and exchange 
data.  

 
This paper appreciates that a great deal of effort has been 

made to make CIM successful in facilitating interoperability. 
At the same time, this paper realizes that representing the 
business data semantics in CIM requires a clear understanding 
of the following: 

• Meaning of the UML modeling concepts utilized – The 
meaning (semantics) of the UML modeling concepts 
provides a detailed descriptions of what a modeling 
concepts means including a set of properties (describing 
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difference aspects of the concepts), constraints on its 
uses, and its execution consequences [3, preface]. The 
meaning of the UML modeling concepts are the basic 
guideline of any object oriented data modeling 
practices. 

• How the business data semantics are represented in the 
context of CIM – Modeling business data semantics 
and requirements with UML often results in a network 
of modeling concepts such as classes, attributes, and 
associations. The business data semantics are then 
carried by the modeling concepts and their semantics 
which provide a formal way to define entities, 
relationships, hierarchies, rules, constraints, and 
restrictions. With the formal representation of the 
business data semantics, the CIM then can serve as a 
semantic foundation not only for human understanding, 
but also for applications/systems to achieve common 
understanding, physical model (code) generations, 
validity checking, and other activities that formal 
semantics is required. 

 
In the following section, the meaning (semantics) of the 

UML modeling concepts utilized in CIM are elaborated. At 
the same time, classes, attributes, associations, inheritance, 
and data types are explained and examined in the context of 
CIM in order to understand how business data semantics are 
represented. Recommendations are proposed for each CIM 
modeling concepts. This paper believes a set of normative rule 
regarding CIM modeling is much needed. Hopefully the 
recommendations proposed in this paper can provide a good 
starting point. 

III.  THE SEMANTICS OF CIM 
Because UML has been chosen as the modeling language of 

CIM, a comprehensive understanding of the meanings of 
UML concepts (static view) is critical. This section elaborates 
the semantics of each modeling concept used in the CIM, 
including classes, attributes, associations, association class, 
inheritance, and data types. This section also provides an 
explanation and examination of how these modeling concepts 
are applied in the CIM model. This paper makes numerous 
references to the UML Reference Manual [3]. 

A.  Class 
Generally speaking, a class represents a concept in the 

domain being modeled. A concept could be a real-world 
object such as Pole, or an abstraction such as Asset. The 
classes representing abstractions are often used to describe 
common qualities shared by their descendents in inheritance 
hierarchies. Two main criteria determine whether a class is 
abstract. If the class represents a proxy for a concept outside 
the scope of CIM, (such as Person), it should be abstract. If 
the class is in scope, but it is not typically used without a 
context (such as Document), the class should be defined as 
abstract [3, Part 3 – Class].  

Each class must have a non-null unique name within its 
container (such as package or containing class). A containing 

package or class defines a namespace. This defines the scope 
of a class name. The class name must be unique within its 
namespace. A class name may also contain a stereotype which 
is generally used for providing a usage distinction when code 
generation tools are applied [3, Part 3 – class name]. 
 

 Based on the understanding the UML class basics, the 
semantics of classes modeled in CIM are examined and 
summarized as: 

• Each CIM class shall provide an unambiguous 
description and definition of the concept it modeled. An 
exact domain meaning of each class is the foundation to 
guarantee that different systems and application 
understand CIM classes in a common way and use them 
in a consistent way. 

• Because the CIM model doesn’t explicitly define which 
classes are abstract [1, 2] (by default, all classes are 
concrete classes), specific implementations may differ 
in which classes can be instantiated and which can not. 
Furthermore, an ancestor class may be used to support 
substitutability principle (This is further explained in 
Generalization section). For example an application 
may want to use the PowerSystemResource class to 
represent any type of concrete power system resource 
in the situation that it doesn’t know exactly what 
concrete class to use at the time. Either abstract or 
concrete needs to be explicitly defined for these classes. 

• All CIM class definitions are grouped under certain 
packages. Although classes grouped in different 
packages may have the same name, each CIM class has 
a non-null unique name within the whole IEC 61970 
Part 301 and IEC 61968 Part 11 model in order to avoid 
unnecessary confusions and ambiguities. 

• All CIM classes (not representing data types) have NO 
stereotypes. 

 
This paper proposes the following recommendations 

regarding CIM classes. 
TABLE I 

THE RECOMMENDATIONS FOR CIM CLASSES 
UML Class 
Semantics 

Recommendations 

Abstract vs. 
Concrete 

• Abstract vs. Concrete shall be addressed explicitly in 
CIM. 

• Each class shall be identified as either an abstract class 
or a concrete class. Recommendations are: 
o If a class is used for the substitutability principle 

which means it could be instantiated to represent 
concreted descendent classes, it should be set to 
concrete. Guidelines for how these classes shall be 
implemented shall be given within the scope of 
transforming CIM to an implementation model (This 
might be out of the scope of CIM modeling).  

o If a class is for the incremental description purpose 
only and will not be instantiated under any 
circumstances, it should be set to abstract. 



 

Name and 
namespace 

• A formal namespace for overall CIM including both 
61970 and 61968 shall be given so that CIM concepts 
can be fully qualified and better referenced. 

• Each CIM class shall have a unique name within the 
CIM namespace. 

• From the syntax perspective, when the CIM model is 
transformed to other design artifacts (XSD, RDF, OWL, 
Java, C++, and etc), the class name can become a 
qualified name in most of the cases. A normative rule 
for naming convention shall be given. The following 
rules are recommended: 
o Exclude reserved words used in the popular 

implementation languages. 
o Use upper camel case (UCC). 
o Use character set of a-z and A-Z. 
o Don’t use space, periods, or other separators. 

Stereotype • Stereotype shall not be used for a regular CIM class. 

B.  Attribute 
An attribute is used to represent a particular aspect of an 

instance of a class. It is used to describe a value that an 
instance may hold [3, Part 3 – Attribute]. An attribute 
typically has the following settings:  

• Type – Type specifies the type that the value of an 
attribute must conform to. Type can be a class name or 
a built-in data type (primitive). The actual value of the 
attribute must be an instance of the type of one of its 
descendants [3, Part 3 – Attribute, Type].  

• Multiplicity – The multiplicity of an attribute specifies 
the how many values may be held by the object having 
the attribute. The usual multiplicity of an attribute could 
be exactly one, zero or one, zero or more, and one or 
more. If the upper limit is greater than one, it also 
indicates the sequence and uniqueness of the values [3, 
Part 3 – Attribute, Multiplicity]. The syntax of 
multiplicity is also defined in [3, Part 3 – Multiplicity].  

• Name – Each attribute must have a non-null name. This 
name is used to identify the attribute in the class where 
the attribute is defined. The uniqueness of the attribute 
name (including the inherited attribute) needs to be 
achieved within the class [3, Part 3 – Attribute, Name]. 

• Scope – The scope defines whether the attribute is in 
the instance level or class level. By default, attributes 
are in the instance level. The semantics of the scope has 
been modified in UML2. The static feature flag on 
attribute is used to identify the scope of the attribute. 
For details, please refer to [3, Part 3 – Attribute, Static, 
Scope]. 

• Derivation – Derivation specifies if an attribute can be 
derived from other modeling elements. Although it may 
not add additional semantic meaning to the model, it 
may be used for clarification or designing purpose [3, 
Part 3 – Attribute, Derivation]. 

• Visibility – Visibility describes the capability of an 
attribute to be referenced by another modeling element 
in different container or class. Typically there are three 
status, Public, Protected, and Private. For details about 
the semantics for each status, please refer to [3, Part 3 – 
Visibility]. 

• Initial Value – Initial value specifies the initial value of 
an attribute when an object is instantiated. The initial 
value is expressed in a text string which will be used to 
interpret the value of the attribute when the object is 

initiated. For details, please refer to [3, Part 3, Initial 
Value]. 

• For the purpose of this paper, other settings like 
changeability, redefinition and subsetting, and tagged 
value are not elaborated here. For details about these 
settings, please refer to [3]. 

 
Based on the understanding of the UML attribute basics, the 

semantics of attributes modeled in CIM are examined and 
summarized as: 

• Each CIM attribute (including both native and 
inherited) shall provide an unambiguous description 
and definition of the aspect it modeled. An exact 
domain meaning of each attribute is the foundation to 
guarantee that different systems and application 
understand CIM attributes in a common way and use 
them in a consistent way. 

• Type – Each attribute defined in a CIM class (excluding 
these classes for data type purpose) has a type which is 
either a built-in type or a CIM data type class. So far, 
there is no attribute has been defined with a type as 
another CIM class.  

• Multiplicity – The current multiplicity expression of all 
CIM attributes is omitted from the definition. 
According to the UML syntax [3, Part 3, Multiplicity], 
the multiplicity is exactly one when the expression is 
omitted. A discrepancy may exist between the model 
definition and the common understanding of the 
multiplicity of CIM attributes, which is zero to one if 
omitted.  

• Name – Each CIM attribute (including both native and 
inherited attributes) has a unique non-null name within 
its containing class.  

• Scope – The scope of all CIM attribute is at the instance 
level. There are no static attributes defined.  

• Derivation – Derivation indicators are not used in any 
of the CIM attributes.  

• Visibility – All CIM attributes are currently set to 
Public. Any status other than Public presents 
programming language independent information.  

• Initial Value – Initial values have been seen in some of 
the CIM attributes.  

 
This paper proposes the following recommendations 

regarding CIM attributes. 
TABLE II 

THE RECOMMENDATIONS FOR CIM ATTRIBUTES 
UML 

Attribute  
Semantics 

Recommendations 

Type • A normative rule is recommended to enforce that each 
attribute must have a type. 

• UML primitive and CIM user-defined data type are 
legitimate candidates for attribute type. 

• The possibility of modeling an association as an 
attribute (the type would be a regular CIM class) needs 
to be considered if the association is owned by the class. 

Multiplicity • Provides possibility of allowing absence of (optional) 
values or null values (zero multiplicity), and greater 
than one. 

• If the multiplicity is greater than one, sequence and 
uniqueness information needs to be given. 



 

Name • Each CIM attribute (including both native and 
inherited) shall have a unique name within its defining 
class. 

• From the syntax perspective, the attribute name should: 
o Exclude reserved words used in the popular 

implementation languages. 
o Use lower camel case (UCC). 
o Use character set of a-z and A-Z. 
o Don’t use space, periods, or other separators. 

Scope • No static attributes are allowed in CIM. 
Derivation • Because derivation may provide some advantages for 

further clarification and saving computation, the 
possibility of using derivation shall be considered by the 
CIM standard. 

Visibility • All attribute must have “Public” visibility 
Initial Value • Initial value shall not be given to any CIM attributes. 

They should be used in the corresponding 
implementation model. 

Stereotype • Stereotype shall not be used for any CIM attribute. 

C.  Binary Association 
In general, an association is a relationship among two or 

more specified classes that describes the connection between 
their instances. A binary association is an association that has 
exactly two association ends. The structure of a binary 
association typically includes: 

• Association Name – An association may have an 
optional name which shall be unique among the 
associations and classes within the containing package. 
An association is not required to have a name. 
Rolename on its ends provides an alternative way to 
distinguish multiple associations among same classes 
[3, Part 3 – Association]. 

• Association End – Association end defines the 
participation of one class at a give position (role) in the 
association. Each association end specifies the 
properties that apply to the participation of the 
corresponding object. The properties include: 
o Name (rolename) – Association end name, also 

known as rolename, is used to identify the 
association end of an association. It is also used to 
navigate from one object to another object using 
the association. Given the purpose of the rolename, 
it must be unique in both namespaces (classes). All 
rolenames in an association must be different. The 
rolenames for a self-association are necessary to 
distinguish the roles that the same class plays on 
either end of the association. Rolenames are also 
necessary to distinguish associations between the 
same pair of classes which don’t have association 
names. In the case that there is only one association 
between a pair of classes, the rolename is optional 
because the class name can be used to distinguish 
the association end [3, Part 3 – Association end, 
Rolename]. 

o Visibility – The association end visibility specifies 
if the class on the far end can see the association 
toward the end with the visibility settings. The 
typical status of the visibility is Public, Private, and 
Protected. For more details, please refer to [3, Part 
3 – Association end, visibility]. 

o Multiplicity – Multiplicity defines possible number 
of objects for an association end that may exist 

simultaneously. If the lower bound is set to zero, a 
distinction should be made between absence of 
value and null. If the upper bound is set to greater 
than one, the sequence and uniqueness of the 
objects are also needs to be specified [3, Part 3 – 
Association end, Multiplicity]. 

o Navigability – Navigability specifies if a given 
object on one end of the association is able to find 
the object(s) on the other end of the association [3, 
Part 3 – Association end, Navigability]. 

o Aggregation – Aggregation models the whole-part 
relationship between an aggregate object and 
constituent objects. The object on the constituent 
side (part) is part of the object on the aggregate 
(whole) side. The additional semantics that the 
aggregation added to the association is that chains 
of aggregation instances may not form a circle. It is 
also important to understand that the lifecycle of 
constituent objects are independent of the 
aggregate object [3, Part 3 – Association end, 
Aggregation]. 

o Composition – Composition is a stronger form of 
Aggregation with additional constraint which gives 
the ownership of the constituent objects to the 
aggregate object.  Composition is used when the 
part objects are actually owned by the owner and 
don’t have independent life without the owner. For 
details, please refer to [3, Part 3 – Association end, 
Aggregation, Composition]. 

• Derivation – Derivation specifies if an association can 
be derived from other modeling element. 

• For the purpose of this paper, other settings like 
changeability, redefinition, and specialization are not 
elaborated here. For details, please refer to [3]. 

 
After understanding the basics of UML associations, the 

semantics of associations modeled in CIM are examined and 
summarized as: 

• Each CIM association shall provide an unambiguous 
description and definition of the aspect it modeled. An 
exact domain meaning of each association is the 
foundation to guarantee that different systems and 
application understand CIM associations in a common 
way and use them in a consistent way. 

• Association Name – There is no association name for 
any of the associations modeled in CIM so far.  

• Association End 
o Name (rolename) – Each association end is 

given a name in CIM. From the semantic 
perspective, the namespace and uniqueness of 
each rolename need to be normatively defined.  

o Visibility – Each association end in CIM is set to 
public regarding the visibility.  

o Multiplicity – Each association end in CIM is 
defined with multiplicity information. Typical 
multiplicity includes exact one, zero to one, zero 
to many, and one to many.  

o Navigability – All the associations in CIM can 
be navigated in both ways.  



 

o Aggregation and Composition – Aggregation is 
used to model the whole-part relationship in 
CIM. So far, there is no composition in CIM.  

• Derivation – There is no association defined as a 
derived association. Actually derived association is the 
most commonly used derived element. It represents a 
virtual association that can be computed from two or 
more fundamental associations. For example a derived 
association can be set up between the 
ConductingEquipment and ConnectivityNode to show 
to which connectivity node a device is connect. The 
association can be computed from the relationship 
between ConductingEquipment->Terminal, and 
Terminal->ConnectivityNode. Although it may not 
provide additional semantic information, an 
implementation may want to explicitly include the 
derived association in order to avoid recomputing.  

 
This paper proposes the following recommendations 

regarding CIM binary associations.  
TABLE III 

THE RECOMMENDATIONS FOR CIM BINARY ASSOCIATIONS 
UML Binary Association 

Semantics 
Recommendations 

Association Name • No binary association requires an 
association name. 

Name 
(rolename) 

• Each rolename (including both native 
and inherited) needs to be unique 
within its defining class. 

Visisbility • Each association end shall have 
“Public” visibility 

Multiplicity 

• If the lower bound is set to zero – The 
difference between absence of value 
and null shall be made. The 
recommendation is using absence of 
value. 

• If the upper bound is set to greater 
than one – Currently the ordering and 
uniqueness of a set of objects are not 
explicitly specified in CIM. In UML1, 
the ordering was separate from the 
multiplicity. In UML2, ordering and 
uniqueness are closely related to 
multiplicity. This paper recommends: 
o The sequence of objects shall be set 

to unordered. 
o The uniqueness of objects shall be 

set to unique. 

Navigability 

• Possibility of defining one-way 
navigability needs to be considered in 
the CIM standard. Because 
navigability may implicate reference, 
pointers, or foreign keys in the 
implementation model, an appropriate 
one-way navigability may reduce 
unnecessary complexity for the 
implementation model. 

Association 
End 

Aggregation 
and 

Composition 

• Aggregation shall be used to model 
whole-part relationship. The chains of 
aggregation must not form a circle 
which mean if object (a) is part of 
object (b), object (b) can not be part of 
(a) directly or indirectly. 

• Composition shall be used in the case 
that the lifecycle of the part object is 
controlled by the whole object. 

Derivation • Because derivation may provide some 
advantages for further clarification 
and saving computation, the 

possibility of using derivation shall be 
considered by the CIM standard. 

D.  Association Class 
A binary association provides the capabilities for modeling 

a relationship between two sets of objects. When the 
relationship needs its own properties, a binary association is 
not sufficient to provide necessary modeling capabilities. For 
example if the percentage of the ownership between a resource 
and an organization (a resource may be owned by more than 
one organization, an organization may own more than one 
resource) needs to be modeled, an attribute is probably needed 
to model the percentage for the ownership. This ownership 
percentage doesn’t belong to either the resource or the 
organization. It belongs to the ownership relationship. An 
association class is usually applied to the scenario that the link 
between two or more objects need its own attributes, 
operations, or reference to other objects. An association class 
is an association that is also a class so that it has both 
association properties (association end) and class properties 
(attributes and operations). The association class and the 
corresponding association is really a single modeling element 
which describes all aspects of a link between objects.  
 

From implementation perspective, an association class can 
be treated as a class with references to the association ends. 
This may lead to a way that decouples the association class 
(connecting class A and B) with a class that have binary 
associations to A and B. It is important to know that the 
semantics of the two modeling approaches are not the same 
although they may model the same information. If the 
uniqueness is set on the association end, the identity of an 
association class instance is determined by the unique 
combination of the references. If the setting on the association 
end is non-unique, the identity of an association class instance 
needs to be determined by properties of the association class 
along with the combination of the references. For more 
details, please refer to [3, Part 3 – Association Class]. 
 

Association classes are used in the CIM model [2]. Because 
association classes are associations and classes, all the settings 
for associations and classes needs to be given for any 
association class in CIM. In addition to that, the follow 
recommendations are proposed: 

• If an association class is defined for an association 
between two classes, can the association be used 
without the involvement of the association class? Based 
on the semantics of the UML, the answer is no. The 
common understanding and usage on this case are yet 
to be established. 

• If the multiplicity is greater than one, the uniqueness 
needs to be defined explicitly. Unlike the CIM binary 
associations, the introduction of the association class 
may also introduce the case that the pair of the instance 
of the two classes is not unique. For example the same 
pair of instances of Organization and Document may 
play different roles which are identified by difference 
instances of the DocOrgRole class. 



 

• The identification of instances of an association class 
needs to be given. Because the association class is part 
of the association, the identification of instances of the 
association class is an important factor to fully describe 
the association.  

E.  Generalization 
Generalization describes the relationship between a more 

general definition and a more specific definition. The more 
specific definition inherits from the general one and extends it. 
It fully complies with the general definition. There are two 
purposes of generalization: 

• Substitutability Principle – This is to define the 
condition that an instance of a more specified class can 
be used when a variable of a more general class is 
declared. This rule enables polymorphism which is one 
of the most powerful object-orient programming 
concepts [3, Part 2 – Generalization]. 

• Inheritance – It is a mechanism of incrementally 
describe an element by sharing descriptions of its 
ancestors. With the inheritance, the subclass is able to 
incrementally define its properties by sharing the 
properties defined in its ancestors [3, Part 2 – 
Inheritance]. 

 
The substitutability principle provides the power of 

representing objects of descendent classes by the ancestor 
class. In CIM, some of the ancestor classes may never be used 
for substitutability. For example, the class Naming is purely 
designed for reusing the attributes and it is not appropriate to 
use it for representing any of the objects of the descendent 
classes. In most cases, the ancestor classes may be used to 
represent concrete descendent classes. Whether an ancestor 
class can be instantiated is depend on if it is abstract or 
concrete. Recommendations are given in the previous section 
regarding abstract vs. concrete. 
 

For inheritance purpose, attributes and participations in 
associations are shared by subclasses. If a subclass is created, 
the inherited attributes and participations have the following 
semantics: 

• Inherited attributes – All attributes defined in the 
ancestor classes may be shared by its descendents. All 
attributes including the inherited ones need to be unique 
in the descendent class.  

• Inherited association participations – All association 
participations defined in the ancestor classes may be 
shared by its descendents. All association participations 
including the inherited ones need to be unique in the 
descendent class. 

F.  Data Type 
In UML, there are primitive predefined data types and user-

definable data types. The primitive predefined data type 
includes Numbers (Integer), Strings, and Booleans. The user-
definable types are enumerations. The meanings of the 
primitive predefined data types are independent of any 
programming languages and they are not user-definable. The 
enumeration type is user-definable data type that has a name 

and a list of enumeration literals. In a particular 
implementation, a UML data type may need to be further 
expressed in a language type which is a data type expressed in 
a programming language (Java, C++, XSD, and etc). 
Language types are not defined in UML specification. A 
profile may need to be defined for language type for a 
particular language. For more details, please refer to [3, Part 3 
– Data Type].  
 

In CIM, data types are defined and used in the following 
ways: 

• UML primitive predefined data types – String, Integer, 
and Booleans are used specify the type of attributes.  

• Non UML primitive data types – Long, unsignedLong, 
Double, Short are also used to specify the type of 
attributes. 

• Enumeration type – enumeration type is used to define 
enumerations.  

• Stereotyped classes – stereotyped (<<Primitive>>) 
classes are used to define CIM data types. Usually, it 
has an attribute, value, to represent the value of the 
attribute, and another attribute, unit, to represent the 
engineering unit. 

 
UML only defines a limited set of language independent 

primitive types. For the purpose of CIM, a richer set of data 
types including real number and date time which can provide a 
clear and programming language independent definition is 
much needed. Different profiles of mapping CIM data types to 
programming language specific data types may need to be 
developed. This paper proposes the following 
recommendations regarding the CIM data types: 

• CIM data types shall not have identities which mean 
they are only used to represent values. 

• Only UML primitive data type and CIM data type can 
be used as type for any attribute in the CIM data type 
classes. 

• No associations shall be defined between any CIM data 
type classes. 

IV.  CONCLUSIONS 
Because CIM is intended to be a logical model for 

facilitating the integration between applications and systems 
regardless of their implementation method, the semantics of 
CIM is a fundamental key factor to achieve that goal. To 
succeed, we need clearly defined domain knowledge, 
including concepts, relationships and rules to provide the 
foundation. Secondly, the domain knowledge needs to be 
represented consistently with UML modeling concepts and 
semantics in such a way that the domain concepts and 
relationships can be formally defined. This paper examines the 
existing semantics of the CIM model, and elaborates on the 
meanings of the UML modeling concepts used. At the same 
time, it explores how the business data semantics are 
represented within the context of CIM. The result is a set of 
recommendations proposing guidelines for the use of each 
CIM modeling construct to represent the business semantics. 
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