

Abstract-- The IEC TC 57 Common Information Model (CIM)
started with a focus on the power system models in the Energy
Management Systems (EMS) domain. The need for a common
model in Distribution Management Systems (DMS) and market
operations drove CIM into those areas. The CIM was created in
order to provide an information exchange format to facilitate the
integration of applications and systems independent of their
vendors and implementation. The current CIM model, including
61970 Part 301 and 61968 Part 11, intends to provide a standard
semantic foundation for applications and systems to move toward
interoperability. Given the fact that more and more integration
projects are leveraging the standard CIM and using it as one of
the input models forming the basis of an enterprise-wise model,
the semantics (meaning “meanings”) of the model are the key
aspect that enables applications and systems (developers) to
understand the data that is shared or exchanged among them.
This paper provides an overview of how the business data
semantics are represented in CIM using UML syntax. It
elaborates on the meanings of the UML modeling concepts,
which are further examined in the context of CIM. A set of
recommendations is then proposed, regarding the modeling of
CIM.

Index Terms—Common Information Model (CIM), Unified
Modeling Language (UML), Energy Management System (EMS),
Distribution Management System (DMS)

I. INTRODUCTION
HE common information model (CIM) is one of the most
important parts of the IEC 91670 [1, Part 301] and IEC

61968 [2] series standards. The CIM provides a
comprehensive logical view of a power system [1, Part 1].
CIM started with a focus on the power system models in the
Energy Management Systems (EMS) domain [1, Part 301].
The need for a common model in Distribution Management
Systems (DMS) drove extensions in the directions of asset
management, distribution network, work management, and
other related areas to be included in the CIM [2]. The new
CIM Market Extension (CME) allows the CIM to be used as
the basis for power market operations.

Before we proceed, it is important to understand what the

CIM is, and its intended usage. First of all, the CIM is a
structural (class / object) model that provides a standard way
of representing power system objects in terms of classes and
attributes, as well as the relationships between them [1, Part

Xiaofeng Wang and Steve Van Ausdall are with Xtensible Solutions,
Satellite Beach, FL 32937 (e-mail: xwang@xtensible.net,
svanausdall@xtensible.net)

1]. The comprehensive logical view represented by CIM is
independent of any physical implementation languages and
technologies. It focuses on modeling the electrical utility
domain knowledge with logical modeling concepts so that a
common model (semantic and syntax) can be achieved. Any
extensions or modifications to the CIM model should not
break this fundamental philosophy. Second, the usage of CIM
is characterized as a tool to enable integration where a
common model is needed to facilitate the interoperability
regardless how each application or system is implemented [1,
Part 1]. Because CIM is a logical model providing formal
semantics for the electrical utility domain, it doesn’t address
the physical format and structures that an implementation
model uses for data exchange and sharing. What it does do is
specifying the domain concepts and semantics to which the
implementation model can be mapped. Given this traceability
back to a standard model, a mutual understanding of the data
content being exchanged and shared can be achieved. The
CIM is therefore a logical model where the business data
semantics are represented.

II. CHALLENGES
In order to promote and enable reusability, CIM defines

power system domain knowledge using object oriented data
modeling techniques specifying classes, attributes, and
relationships in UML. The power system domain knowledge
is then interpreted in the context of CIM so that when a term is
referenced, a mutual understanding of the term can be
achieved between different parties. Based on the business data
semantics and requirements, the CIM modeling process
typically involves identifying objects and relationships;
designing classes, attributes, and associations; and abstracting
class hierarchies. The most important goal in the CIM
modeling process is to preserve and clarify the business data
semantics so that the CIM can truly become the semantic
foundation for systems and applications to share and exchange
data.

This paper appreciates that a great deal of effort has been

made to make CIM successful in facilitating interoperability.
At the same time, this paper realizes that representing the
business data semantics in CIM requires a clear understanding
of the following:

• Meaning of the UML modeling concepts utilized – The
meaning (semantics) of the UML modeling concepts
provides a detailed descriptions of what a modeling
concepts means including a set of properties (describing

Representing Business Data Semantics
In CIM using UML

Xiaofeng Wang, Member, IEEE, and Steve Van Ausdall

T

difference aspects of the concepts), constraints on its
uses, and its execution consequences [3, preface]. The
meaning of the UML modeling concepts are the basic
guideline of any object oriented data modeling
practices.

• How the business data semantics are represented in the
context of CIM – Modeling business data semantics
and requirements with UML often results in a network
of modeling concepts such as classes, attributes, and
associations. The business data semantics are then
carried by the modeling concepts and their semantics
which provide a formal way to define entities,
relationships, hierarchies, rules, constraints, and
restrictions. With the formal representation of the
business data semantics, the CIM then can serve as a
semantic foundation not only for human understanding,
but also for applications/systems to achieve common
understanding, physical model (code) generations,
validity checking, and other activities that formal
semantics is required.

In the following section, the meaning (semantics) of the

UML modeling concepts utilized in CIM are elaborated. At
the same time, classes, attributes, associations, inheritance,
and data types are explained and examined in the context of
CIM in order to understand how business data semantics are
represented. Recommendations are proposed for each CIM
modeling concepts. This paper believes a set of normative rule
regarding CIM modeling is much needed. Hopefully the
recommendations proposed in this paper can provide a good
starting point.

III. THE SEMANTICS OF CIM
Because UML has been chosen as the modeling language of

CIM, a comprehensive understanding of the meanings of
UML concepts (static view) is critical. This section elaborates
the semantics of each modeling concept used in the CIM,
including classes, attributes, associations, association class,
inheritance, and data types. This section also provides an
explanation and examination of how these modeling concepts
are applied in the CIM model. This paper makes numerous
references to the UML Reference Manual [3].

A. Class
Generally speaking, a class represents a concept in the

domain being modeled. A concept could be a real-world
object such as Pole, or an abstraction such as Asset. The
classes representing abstractions are often used to describe
common qualities shared by their descendents in inheritance
hierarchies. Two main criteria determine whether a class is
abstract. If the class represents a proxy for a concept outside
the scope of CIM, (such as Person), it should be abstract. If
the class is in scope, but it is not typically used without a
context (such as Document), the class should be defined as
abstract [3, Part 3 – Class].

Each class must have a non-null unique name within its
container (such as package or containing class). A containing

package or class defines a namespace. This defines the scope
of a class name. The class name must be unique within its
namespace. A class name may also contain a stereotype which
is generally used for providing a usage distinction when code
generation tools are applied [3, Part 3 – class name].

 Based on the understanding the UML class basics, the
semantics of classes modeled in CIM are examined and
summarized as:

• Each CIM class shall provide an unambiguous
description and definition of the concept it modeled. An
exact domain meaning of each class is the foundation to
guarantee that different systems and application
understand CIM classes in a common way and use them
in a consistent way.

• Because the CIM model doesn’t explicitly define which
classes are abstract [1, 2] (by default, all classes are
concrete classes), specific implementations may differ
in which classes can be instantiated and which can not.
Furthermore, an ancestor class may be used to support
substitutability principle (This is further explained in
Generalization section). For example an application
may want to use the PowerSystemResource class to
represent any type of concrete power system resource
in the situation that it doesn’t know exactly what
concrete class to use at the time. Either abstract or
concrete needs to be explicitly defined for these classes.

• All CIM class definitions are grouped under certain
packages. Although classes grouped in different
packages may have the same name, each CIM class has
a non-null unique name within the whole IEC 61970
Part 301 and IEC 61968 Part 11 model in order to avoid
unnecessary confusions and ambiguities.

• All CIM classes (not representing data types) have NO
stereotypes.

This paper proposes the following recommendations

regarding CIM classes.
TABLE I

THE RECOMMENDATIONS FOR CIM CLASSES
UML Class
Semantics

Recommendations

Abstract vs.
Concrete

• Abstract vs. Concrete shall be addressed explicitly in
CIM.

• Each class shall be identified as either an abstract class
or a concrete class. Recommendations are:
o If a class is used for the substitutability principle

which means it could be instantiated to represent
concreted descendent classes, it should be set to
concrete. Guidelines for how these classes shall be
implemented shall be given within the scope of
transforming CIM to an implementation model (This
might be out of the scope of CIM modeling).

o If a class is for the incremental description purpose
only and will not be instantiated under any
circumstances, it should be set to abstract.

Name and
namespace

• A formal namespace for overall CIM including both
61970 and 61968 shall be given so that CIM concepts
can be fully qualified and better referenced.

• Each CIM class shall have a unique name within the
CIM namespace.

• From the syntax perspective, when the CIM model is
transformed to other design artifacts (XSD, RDF, OWL,
Java, C++, and etc), the class name can become a
qualified name in most of the cases. A normative rule
for naming convention shall be given. The following
rules are recommended:
o Exclude reserved words used in the popular

implementation languages.
o Use upper camel case (UCC).
o Use character set of a-z and A-Z.
o Don’t use space, periods, or other separators.

Stereotype • Stereotype shall not be used for a regular CIM class.

B. Attribute
An attribute is used to represent a particular aspect of an

instance of a class. It is used to describe a value that an
instance may hold [3, Part 3 – Attribute]. An attribute
typically has the following settings:

• Type – Type specifies the type that the value of an
attribute must conform to. Type can be a class name or
a built-in data type (primitive). The actual value of the
attribute must be an instance of the type of one of its
descendants [3, Part 3 – Attribute, Type].

• Multiplicity – The multiplicity of an attribute specifies
the how many values may be held by the object having
the attribute. The usual multiplicity of an attribute could
be exactly one, zero or one, zero or more, and one or
more. If the upper limit is greater than one, it also
indicates the sequence and uniqueness of the values [3,
Part 3 – Attribute, Multiplicity]. The syntax of
multiplicity is also defined in [3, Part 3 – Multiplicity].

• Name – Each attribute must have a non-null name. This
name is used to identify the attribute in the class where
the attribute is defined. The uniqueness of the attribute
name (including the inherited attribute) needs to be
achieved within the class [3, Part 3 – Attribute, Name].

• Scope – The scope defines whether the attribute is in
the instance level or class level. By default, attributes
are in the instance level. The semantics of the scope has
been modified in UML2. The static feature flag on
attribute is used to identify the scope of the attribute.
For details, please refer to [3, Part 3 – Attribute, Static,
Scope].

• Derivation – Derivation specifies if an attribute can be
derived from other modeling elements. Although it may
not add additional semantic meaning to the model, it
may be used for clarification or designing purpose [3,
Part 3 – Attribute, Derivation].

• Visibility – Visibility describes the capability of an
attribute to be referenced by another modeling element
in different container or class. Typically there are three
status, Public, Protected, and Private. For details about
the semantics for each status, please refer to [3, Part 3 –
Visibility].

• Initial Value – Initial value specifies the initial value of
an attribute when an object is instantiated. The initial
value is expressed in a text string which will be used to
interpret the value of the attribute when the object is

initiated. For details, please refer to [3, Part 3, Initial
Value].

• For the purpose of this paper, other settings like
changeability, redefinition and subsetting, and tagged
value are not elaborated here. For details about these
settings, please refer to [3].

Based on the understanding of the UML attribute basics, the

semantics of attributes modeled in CIM are examined and
summarized as:

• Each CIM attribute (including both native and
inherited) shall provide an unambiguous description
and definition of the aspect it modeled. An exact
domain meaning of each attribute is the foundation to
guarantee that different systems and application
understand CIM attributes in a common way and use
them in a consistent way.

• Type – Each attribute defined in a CIM class (excluding
these classes for data type purpose) has a type which is
either a built-in type or a CIM data type class. So far,
there is no attribute has been defined with a type as
another CIM class.

• Multiplicity – The current multiplicity expression of all
CIM attributes is omitted from the definition.
According to the UML syntax [3, Part 3, Multiplicity],
the multiplicity is exactly one when the expression is
omitted. A discrepancy may exist between the model
definition and the common understanding of the
multiplicity of CIM attributes, which is zero to one if
omitted.

• Name – Each CIM attribute (including both native and
inherited attributes) has a unique non-null name within
its containing class.

• Scope – The scope of all CIM attribute is at the instance
level. There are no static attributes defined.

• Derivation – Derivation indicators are not used in any
of the CIM attributes.

• Visibility – All CIM attributes are currently set to
Public. Any status other than Public presents
programming language independent information.

• Initial Value – Initial values have been seen in some of
the CIM attributes.

This paper proposes the following recommendations

regarding CIM attributes.
TABLE II

THE RECOMMENDATIONS FOR CIM ATTRIBUTES
UML

Attribute
Semantics

Recommendations

Type • A normative rule is recommended to enforce that each
attribute must have a type.

• UML primitive and CIM user-defined data type are
legitimate candidates for attribute type.

• The possibility of modeling an association as an
attribute (the type would be a regular CIM class) needs
to be considered if the association is owned by the class.

Multiplicity • Provides possibility of allowing absence of (optional)
values or null values (zero multiplicity), and greater
than one.

• If the multiplicity is greater than one, sequence and
uniqueness information needs to be given.

Name • Each CIM attribute (including both native and
inherited) shall have a unique name within its defining
class.

• From the syntax perspective, the attribute name should:
o Exclude reserved words used in the popular

implementation languages.
o Use lower camel case (UCC).
o Use character set of a-z and A-Z.
o Don’t use space, periods, or other separators.

Scope • No static attributes are allowed in CIM.
Derivation • Because derivation may provide some advantages for

further clarification and saving computation, the
possibility of using derivation shall be considered by the
CIM standard.

Visibility • All attribute must have “Public” visibility
Initial Value • Initial value shall not be given to any CIM attributes.

They should be used in the corresponding
implementation model.

Stereotype • Stereotype shall not be used for any CIM attribute.

C. Binary Association
In general, an association is a relationship among two or

more specified classes that describes the connection between
their instances. A binary association is an association that has
exactly two association ends. The structure of a binary
association typically includes:

• Association Name – An association may have an
optional name which shall be unique among the
associations and classes within the containing package.
An association is not required to have a name.
Rolename on its ends provides an alternative way to
distinguish multiple associations among same classes
[3, Part 3 – Association].

• Association End – Association end defines the
participation of one class at a give position (role) in the
association. Each association end specifies the
properties that apply to the participation of the
corresponding object. The properties include:
o Name (rolename) – Association end name, also

known as rolename, is used to identify the
association end of an association. It is also used to
navigate from one object to another object using
the association. Given the purpose of the rolename,
it must be unique in both namespaces (classes). All
rolenames in an association must be different. The
rolenames for a self-association are necessary to
distinguish the roles that the same class plays on
either end of the association. Rolenames are also
necessary to distinguish associations between the
same pair of classes which don’t have association
names. In the case that there is only one association
between a pair of classes, the rolename is optional
because the class name can be used to distinguish
the association end [3, Part 3 – Association end,
Rolename].

o Visibility – The association end visibility specifies
if the class on the far end can see the association
toward the end with the visibility settings. The
typical status of the visibility is Public, Private, and
Protected. For more details, please refer to [3, Part
3 – Association end, visibility].

o Multiplicity – Multiplicity defines possible number
of objects for an association end that may exist

simultaneously. If the lower bound is set to zero, a
distinction should be made between absence of
value and null. If the upper bound is set to greater
than one, the sequence and uniqueness of the
objects are also needs to be specified [3, Part 3 –
Association end, Multiplicity].

o Navigability – Navigability specifies if a given
object on one end of the association is able to find
the object(s) on the other end of the association [3,
Part 3 – Association end, Navigability].

o Aggregation – Aggregation models the whole-part
relationship between an aggregate object and
constituent objects. The object on the constituent
side (part) is part of the object on the aggregate
(whole) side. The additional semantics that the
aggregation added to the association is that chains
of aggregation instances may not form a circle. It is
also important to understand that the lifecycle of
constituent objects are independent of the
aggregate object [3, Part 3 – Association end,
Aggregation].

o Composition – Composition is a stronger form of
Aggregation with additional constraint which gives
the ownership of the constituent objects to the
aggregate object. Composition is used when the
part objects are actually owned by the owner and
don’t have independent life without the owner. For
details, please refer to [3, Part 3 – Association end,
Aggregation, Composition].

• Derivation – Derivation specifies if an association can
be derived from other modeling element.

• For the purpose of this paper, other settings like
changeability, redefinition, and specialization are not
elaborated here. For details, please refer to [3].

After understanding the basics of UML associations, the

semantics of associations modeled in CIM are examined and
summarized as:

• Each CIM association shall provide an unambiguous
description and definition of the aspect it modeled. An
exact domain meaning of each association is the
foundation to guarantee that different systems and
application understand CIM associations in a common
way and use them in a consistent way.

• Association Name – There is no association name for
any of the associations modeled in CIM so far.

• Association End
o Name (rolename) – Each association end is

given a name in CIM. From the semantic
perspective, the namespace and uniqueness of
each rolename need to be normatively defined.

o Visibility – Each association end in CIM is set to
public regarding the visibility.

o Multiplicity – Each association end in CIM is
defined with multiplicity information. Typical
multiplicity includes exact one, zero to one, zero
to many, and one to many.

o Navigability – All the associations in CIM can
be navigated in both ways.

o Aggregation and Composition – Aggregation is
used to model the whole-part relationship in
CIM. So far, there is no composition in CIM.

• Derivation – There is no association defined as a
derived association. Actually derived association is the
most commonly used derived element. It represents a
virtual association that can be computed from two or
more fundamental associations. For example a derived
association can be set up between the
ConductingEquipment and ConnectivityNode to show
to which connectivity node a device is connect. The
association can be computed from the relationship
between ConductingEquipment->Terminal, and
Terminal->ConnectivityNode. Although it may not
provide additional semantic information, an
implementation may want to explicitly include the
derived association in order to avoid recomputing.

This paper proposes the following recommendations

regarding CIM binary associations.
TABLE III

THE RECOMMENDATIONS FOR CIM BINARY ASSOCIATIONS
UML Binary Association

Semantics
Recommendations

Association Name • No binary association requires an
association name.

Name
(rolename)

• Each rolename (including both native
and inherited) needs to be unique
within its defining class.

Visisbility • Each association end shall have
“Public” visibility

Multiplicity

• If the lower bound is set to zero – The
difference between absence of value
and null shall be made. The
recommendation is using absence of
value.

• If the upper bound is set to greater
than one – Currently the ordering and
uniqueness of a set of objects are not
explicitly specified in CIM. In UML1,
the ordering was separate from the
multiplicity. In UML2, ordering and
uniqueness are closely related to
multiplicity. This paper recommends:
o The sequence of objects shall be set

to unordered.
o The uniqueness of objects shall be

set to unique.

Navigability

• Possibility of defining one-way
navigability needs to be considered in
the CIM standard. Because
navigability may implicate reference,
pointers, or foreign keys in the
implementation model, an appropriate
one-way navigability may reduce
unnecessary complexity for the
implementation model.

Association
End

Aggregation
and

Composition

• Aggregation shall be used to model
whole-part relationship. The chains of
aggregation must not form a circle
which mean if object (a) is part of
object (b), object (b) can not be part of
(a) directly or indirectly.

• Composition shall be used in the case
that the lifecycle of the part object is
controlled by the whole object.

Derivation • Because derivation may provide some
advantages for further clarification
and saving computation, the

possibility of using derivation shall be
considered by the CIM standard.

D. Association Class
A binary association provides the capabilities for modeling

a relationship between two sets of objects. When the
relationship needs its own properties, a binary association is
not sufficient to provide necessary modeling capabilities. For
example if the percentage of the ownership between a resource
and an organization (a resource may be owned by more than
one organization, an organization may own more than one
resource) needs to be modeled, an attribute is probably needed
to model the percentage for the ownership. This ownership
percentage doesn’t belong to either the resource or the
organization. It belongs to the ownership relationship. An
association class is usually applied to the scenario that the link
between two or more objects need its own attributes,
operations, or reference to other objects. An association class
is an association that is also a class so that it has both
association properties (association end) and class properties
(attributes and operations). The association class and the
corresponding association is really a single modeling element
which describes all aspects of a link between objects.

From implementation perspective, an association class can
be treated as a class with references to the association ends.
This may lead to a way that decouples the association class
(connecting class A and B) with a class that have binary
associations to A and B. It is important to know that the
semantics of the two modeling approaches are not the same
although they may model the same information. If the
uniqueness is set on the association end, the identity of an
association class instance is determined by the unique
combination of the references. If the setting on the association
end is non-unique, the identity of an association class instance
needs to be determined by properties of the association class
along with the combination of the references. For more
details, please refer to [3, Part 3 – Association Class].

Association classes are used in the CIM model [2]. Because
association classes are associations and classes, all the settings
for associations and classes needs to be given for any
association class in CIM. In addition to that, the follow
recommendations are proposed:

• If an association class is defined for an association
between two classes, can the association be used
without the involvement of the association class? Based
on the semantics of the UML, the answer is no. The
common understanding and usage on this case are yet
to be established.

• If the multiplicity is greater than one, the uniqueness
needs to be defined explicitly. Unlike the CIM binary
associations, the introduction of the association class
may also introduce the case that the pair of the instance
of the two classes is not unique. For example the same
pair of instances of Organization and Document may
play different roles which are identified by difference
instances of the DocOrgRole class.

• The identification of instances of an association class
needs to be given. Because the association class is part
of the association, the identification of instances of the
association class is an important factor to fully describe
the association.

E. Generalization
Generalization describes the relationship between a more

general definition and a more specific definition. The more
specific definition inherits from the general one and extends it.
It fully complies with the general definition. There are two
purposes of generalization:

• Substitutability Principle – This is to define the
condition that an instance of a more specified class can
be used when a variable of a more general class is
declared. This rule enables polymorphism which is one
of the most powerful object-orient programming
concepts [3, Part 2 – Generalization].

• Inheritance – It is a mechanism of incrementally
describe an element by sharing descriptions of its
ancestors. With the inheritance, the subclass is able to
incrementally define its properties by sharing the
properties defined in its ancestors [3, Part 2 –
Inheritance].

The substitutability principle provides the power of

representing objects of descendent classes by the ancestor
class. In CIM, some of the ancestor classes may never be used
for substitutability. For example, the class Naming is purely
designed for reusing the attributes and it is not appropriate to
use it for representing any of the objects of the descendent
classes. In most cases, the ancestor classes may be used to
represent concrete descendent classes. Whether an ancestor
class can be instantiated is depend on if it is abstract or
concrete. Recommendations are given in the previous section
regarding abstract vs. concrete.

For inheritance purpose, attributes and participations in
associations are shared by subclasses. If a subclass is created,
the inherited attributes and participations have the following
semantics:

• Inherited attributes – All attributes defined in the
ancestor classes may be shared by its descendents. All
attributes including the inherited ones need to be unique
in the descendent class.

• Inherited association participations – All association
participations defined in the ancestor classes may be
shared by its descendents. All association participations
including the inherited ones need to be unique in the
descendent class.

F. Data Type
In UML, there are primitive predefined data types and user-

definable data types. The primitive predefined data type
includes Numbers (Integer), Strings, and Booleans. The user-
definable types are enumerations. The meanings of the
primitive predefined data types are independent of any
programming languages and they are not user-definable. The
enumeration type is user-definable data type that has a name

and a list of enumeration literals. In a particular
implementation, a UML data type may need to be further
expressed in a language type which is a data type expressed in
a programming language (Java, C++, XSD, and etc).
Language types are not defined in UML specification. A
profile may need to be defined for language type for a
particular language. For more details, please refer to [3, Part 3
– Data Type].

In CIM, data types are defined and used in the following
ways:

• UML primitive predefined data types – String, Integer,
and Booleans are used specify the type of attributes.

• Non UML primitive data types – Long, unsignedLong,
Double, Short are also used to specify the type of
attributes.

• Enumeration type – enumeration type is used to define
enumerations.

• Stereotyped classes – stereotyped (<<Primitive>>)
classes are used to define CIM data types. Usually, it
has an attribute, value, to represent the value of the
attribute, and another attribute, unit, to represent the
engineering unit.

UML only defines a limited set of language independent

primitive types. For the purpose of CIM, a richer set of data
types including real number and date time which can provide a
clear and programming language independent definition is
much needed. Different profiles of mapping CIM data types to
programming language specific data types may need to be
developed. This paper proposes the following
recommendations regarding the CIM data types:

• CIM data types shall not have identities which mean
they are only used to represent values.

• Only UML primitive data type and CIM data type can
be used as type for any attribute in the CIM data type
classes.

• No associations shall be defined between any CIM data
type classes.

IV. CONCLUSIONS
Because CIM is intended to be a logical model for

facilitating the integration between applications and systems
regardless of their implementation method, the semantics of
CIM is a fundamental key factor to achieve that goal. To
succeed, we need clearly defined domain knowledge,
including concepts, relationships and rules to provide the
foundation. Secondly, the domain knowledge needs to be
represented consistently with UML modeling concepts and
semantics in such a way that the domain concepts and
relationships can be formally defined. This paper examines the
existing semantics of the CIM model, and elaborates on the
meanings of the UML modeling concepts used. At the same
time, it explores how the business data semantics are
represented within the context of CIM. The result is a set of
recommendations proposing guidelines for the use of each
CIM modeling construct to represent the business semantics.

V. ACKNOWLEDGMENTS
The author of this paper would like to acknowledge the

reviewers who made this paper possible. Joe Zhou, Shawn Hu,
Terry Saxton, Greg Robinson, and Dan Martin provided
valuable comments and feedback.

VI. REFERENCES
[1] IEC 61970-301 Energy Management System Application Program

Interfaces.
[2] IEC 61968 System Interface for Distribution Management – Part 11

Distribution Information Exchange Model.
[3] James Rumbaugh, Ivar Jacobson, Grady Booch, The Unified Modeling

Language Reference Manual Second Edition, Addison-Wesley, 2005

VII. BIOGRAPHIES
Xiaofeng Wang received the B.S. and M.S. degrees in electrical engineering
from Tsinghua University, Beijing, China, in 1995 and 1998, respectively, and
the Ph.D. degree from the Electrical and Computer Engineering Department
of Michigan Technological University, Houghton MI, in 2001. Currently, Dr.
Wang is a solution manager in the Professional Services division of Xtensible
Solutions and providing strategic integration consulting services to utilities
worldwide. He has extensive knowledge and expertise in the integration
technologies including SOA, Web Services, XML, RDF, OWL, and CIM. Dr.
Wang started his professional career at GE Energy in 2001. Dr. Wang is a
member of IEEE and IEC TC57 Working Group 14.

Steve Van Ausdall is a Solution Architect in the Professional Services
division of Xtensible Solutions, providing guidance and development services
to clients worldwide. He assists utilities using technology to optimize
processes, extract insight from existing data and systems, and streamline data
flows using standards-based enterprise-wide semantic model driven message
and service based integration techniques. Mr. Van Ausdall has extensive
knowledge and experience in enterprise data, application, and process
integration technologies and products including service-oriented architecture,
business process orchestration, geographic information management, energy
and distribution management, asset management solutions, and performance
management using business intelligence and dashboards. Steve has proven
modeling experience, including UML diagrams, XML schemas, and business
process models, and is proficient in the latest software development tools and
methodologies. He draws upon this deep understanding of techniques to
construct information infrastructures that will meet the functional, flexibility
and reliability demands of the business.

